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Observations on distorted turbulent wakes 

By A. J. REYNOLDS 
Cavendish Laboratory, University of Cambridge 

(Received 3 November 1961) 

The question considered here is whether turbulent wakes can undergo a simple 
self-preserving development when convected through a duct of varying cross- 
section. A flow is described as self-preserving if the distributions of its mean- 
value properties at  successive sections have the same basic shape, differing only in 
magnitude and lateral extent. I n  such flows the scales of the mean velocity 
variation and turbulence have been found to be proportional. 

The wakes studied are concentrated near a plane of symmetry through a duct 
of changing rectangular section but constant area; the portion of the wake near 
the other plane of symmetry is considered. Measurements in the flows behind 
three circular cylinders reveal a lack of universality of the scales associated with 
self-preserving solutions of the momentum equation. The wakes of the smaller 
cylinders adopt the predicted form, but that of the largest does not. As it moves 
through the channel, this wake is compressed less rapidly by the imposed lateral 
strain than is predicted. 

Interest is then concentrated on the equation governing the kinetic energy of 
the turbulence and in particular on the relative size of its two production terms, 
that representing the action of the mean wake shear and that representing the 
effect of the distortion applied by the duct. It is found that self-preserving wakes 
can form only in a few kinds of distorting convecting flow. In  the experimental 
duct, which has exponentially varying walls, one of these is set up. Attention is 
concentrated on this case. A stability analysis (based on the criterion that a 
stable wake is one in which the total turbulence production decreases as a result 
of more rapid wake expansion) suggests that, when production by wake shear is 
greater than that by distortion, a stable self-preserving development is possible 
in which the turbulence scale and the velocity defect scale remain proportional. 
But in the alternative, distortion-dominated, case the velocity defect decreases 
continually relatively to the turbulence. 

The experimental results are in accord with these predictions. The transition 
from shear-dominated to distortion-dominated wakes appears to take place when 
the production terms are about equal. The failure of the one experimental wake 
to adopt a simple self-preserving form can be attributed to the relatively slight 
organization of its turbulence when distortion is begun. 

1. Introduction 
Several years ago Townsend (1  954) studied the effect of uniform distortion on 

homogeneous turbulence by allowing the turbulence generated by a grid to pass 
through a channel whose width and height varied while the cross-sectional area 
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and hence the convective velocity remained essentially constant. In  the present 
studies turbulent wakes were generated upstream of the distorting section and the 
forms they adopted in it were examined. Such a flow is not solely determined by 
an initial impulse applied when it is set up, as are many free turbulent flows, but 
may be influenced also by the subsequent straining of the convecting stream. It 
is then of particular interest to inquire whether there is possible in this more 
complicated situation a simple self-preserving development like those of other 
free turbulent flows. For comparison, the basic results of a search for self- 
preserving forms will be presented before we turn to the experimental results. 

2. Velocity and width scales for self-preserving distorted wakes 

described by 
We shall consider wakes introduced into a stream which when undisturbed is 

U = U,, a constant, 

v = -a'(x) u, y, 

w = u'(x) u,z. 
The streamlines of this flow are given by 

y a e-a(z), z a e@). 

A close approximation to the basic pattern should be established in a constant- 
area duct with walls defined by equations of this form, provided that a'(x) is 
sufficiently small and slowly varying and that compensation is made for 
boundary-layer growth. 

The wake will be taken to be concentrated near the plane y = 0; we shall 
consider the portion near the other plane of symmetry, z = 0. For distorting 
flows that either convect the wake towards the plane y = 0 (u'(x) > 0 )  or, at worst, 
do not expand it too violently, the ' boundary-layer ' approximation will still be 
valid. Proceeding on this basis we obtain from 

(valid near the plane of symmetry z = 0 )  the simplified form 

au azLv a w  
U --u'(x)y- +- = v-. 
1 r' ax a Y l  a Y  aY2 

A momentum integral can be obtained by integrating over two planes perpendi- 
cular to the x-axis and over a suitable stream surface joining them: 

Be-"(t) 

U , / y d z /  
(U, - U )  dy = constant, 

-Be  

where the constant B must be chosen large enough to extend the integration 
beyond the wake but not so large that the integrated effect of the non-uniform 
pressure is comparable with the momentum flux. These conflicting conditions 
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cannot both be satisfied over a very large range of x. In deriving this relationship 
we have assumed the mean streamlines to retain their undisturbed shape; this is 
consistent with the resulting momentum integral which indicates that the mass 
flux defect varies as exp(-a(x)), just as do the undisturbed streamlines in the 
(x, y)-plane. 

( a )  Asymptotic scales for turbulent distorted wakes 

Following Townsend (1956) we seek solutions to the momentum equation in the 
form 

where uo(x) and Z,(x) are velocity and width scales whose variation specifies the 
basic geometry of the motion andf(7) and gI2(7) are the self-preserving forms for 
the variations of mean velocity and mixing stress across the wake. 

From equations (1) and (2) we find 

V u, --f-- -+-zo f '  + q ; , = - f "  [2;2 uo ax da ax ) J uo l ,  

and 
B e x p  [-a(s)lllo f - B e x p  [-n(s)l lZ, 

f (7)dy = constant. ea(x)uo 1, 

The integral is in fact independent of x so long as the range of integration extends 
beyond the wake at every station. If these relations are to be of self-preserving 
form we must have 

= -- _ _  ' 0  '1 a constant, 
u; ax uy 

and 
i 1 dl, da 

uo &+&lo = ?  a constant, -( ) bl, 
e@h,Z, = constant. I 

(4) 

In  general the viscous term cannot be retained in the self-preserving equation. 
For the contracting case of special interest the importance of the viscous term 
increases downstream; ultimately wakes of this class may cease to be turbulent. 
Note also that the second condition for self-preservation admits of a simple 
interpretation: the net wake spread is, in a self-preserving wake, the sum of the 
imposed convection a t  the boundary and an expansion proportional to the 
turbulence scale. 

The scales given by (4) are 

If d(x) = a ,  a positive constant, the streamlines are given by y K e-ax. 
Asymptotically, 

I ,  cc e - ~ o ~ .  u, cc e-tm. 
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Again, if a’(x) cc llx, thestreamlines aregiven by y cc l/xm, and, asymptotically, 

form > - 1, form < - I, 
1, cc x-&m-l), I ,  cc x-m, 

Uo cc x-h+1); u,, = constant. 

Very likely the results for m < - 1 are not physically meaningful: clearly the 
assumptions about the flow geometry are violated. 

Returning now to the self-preserving form of equation (1) we find that it may 
be written 

C l T f  = g12 

since the momentum invariant indicates that c1 = c2. This form is a convenient 
starting-point for an analysis based on some theory of the structure of the 
turbulence in the wake. 

The self-preserving forms discovered here for distorted wakes cannot be 
expected to be as comprehensive as those for the simple wake. The neglect of 
pressure terms in deriving the momentum integral must inevitably limit its 
applicability to only a portion of the wake. Moreover, for the contracting case of 
prime interest, the importance of the viscous term may increase until the 
turbulence is no longer maintained. 

(b)  The asymptotic forms of laminar distorted wakes 

Proceeding as before we find that 

1; duo -- = _ _  ‘3 a constant, 
uo dx Ul’ 

ea(x)uolo = constant, 

must be satisfied by self-preserving scales. Again we have 

u, lo  - - e-a(x)) 
1’ 

indicating that laminar flow is sustained in a compressed wake. We shall consider 
the same examples as for the turbulent case. If  a(x)  = ax, a > 0,  then asympto- 
tically I ,  = constant, u, cc e-ax. Or if e-a(x) cc X-m, then, asymptotically, 

for m < - 4, 
lo cc x-m, 
uo = constant. 

The behaviour of these wakes is very different from that of the corresponding 
turbulent wakes. This may be rationalized by comparing the second condition on 
these scales with the corresponding condition on the scales for turbulent wakes. 

The self-preserving form of the momentum equation can now be integrated 
~ 

(here c3 = c4) to give 
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3. An experimental study of width and velocity scales 
Townsend's measurements of simple turbulent wakes behind circular cylinders 

have shown that the mean velocity profiles can adopt an approximately self- 
preserving form for xld = 80, long before the various measures of turbulent 
intensity do so. Thus the determination of velocity and width scales characterizing 
the velocity defect should be the most convenient means of testing the predictions 
of the similarity analysis. The peak velocity defect and the width a t  half the peak 
value are the quantities that will be taken as velocity and length scales. 

In order to make clear the departure of the actual flows from full self-preserva- 
tion, comparisons will be made with two mathematical models, one representing 
a self-preserving wake in an undisturbed stream, the other a wake in a distorting 
flow modelling that of the experimental situation. The second model wake is in 
the condition of undistorted self-preservation on reaching the distorting duct and 
retains a self-preserving form while moving through it. The derivation of these 
models is relegated to an appendix. 

(a )  Experimental apparatus 
The distorting duct used in these studies was that used by Townsend (1954) in his 
investigation of the uniform distortion of homogeneous grid turbulence. Once 
again this duct formed part of the open-return wind tunnel described by Towns- 
end, only two modifications being made to the original arrangement: a wooden 
former l i in .  wide was fitted in the slot for grids just downstream of the con- 
traction, and a more rigid section, 18 in. long, was introduced after the distorting 
duct. On this added section was mounted a stout traversing gear with which a 
longitudinal rod carrying sensing instruments could be deflected to traverse the 
instruments vertically across the duct. 

The wakes studied were those behind circular cylinders inserted through the 
former mentioned above. Thus the distorting section began 206 in. downstream of 
the cylinder axis and extended for 40 in. to the parallel-sided recovery section. 
The distorting duct had exponentially shaped sides, its section changing from 
height 24in., width 6in. to height 6$in., width 24kin. over the 40in. length. The 
slight increase in area compensated for boundary-layer growth. The cylinders 
were introduced horizontally; the convection induced by the duct walls was 
inwards towards the plane of the wake. In  the derivation of the self-preserving 
models the convection has been specified by 

for 1 x2 > x > xl, 

i' 

l a 
= ax - (x2 + x l )  for x > x2, 

with a = 0-0346in.-l7 x2-x1 = 20in. This corresponds to a graded imposition 
over a 20in. section of the duct, as suggested by the results of Townsend (1954). 
(Equation (6) has been given in the appendix as equation (A2).) 

22 Fluid Mech. 1 3  
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(b )  Velocity defect measurements 

A small pitot-tube was used to determine the velocity distribution at seven 
stations of the distorted wake behind a cylinder of diameter 8 in. Two difficulties 
were encountered: the same free-stream pressure was not found on both sides of 
the wake, indicating a lack of uniformity in the stream approaching the cylinder, 
and considerable drift was encountered in the sensitive manometer, presumably 
due to temperature variation. The second problem was overcome by taking 
several sets of readings at each station, the first by subtracting from the averaged 
readings a linear function of lateral position. 

s = 2-z1 
(in.) 

5 
10 
15 
25 
35 
45 
50 

b 
d 

2.69 
3.26 
3.14 
3.04 
2.77 
2.43 
2.56 

TABLE 1 

0-1472 
0.1228 
0.1143 
0-0880 
0.0736 
0.0590 
0.0515 

eat" 

1.022 
1.090 
1.215 
1-680 
2.377 
3.36 

Velocity defect data. 

0.405 
0.437 
0.436 
0.455 
0.485 
0.482 

From the plotted results were obtained u,, the peak velocity defect, and b, 
the width of the distribution for which the defect had fallen to half its peak value. 
These quantities are given in table 1. From these data has been computed the 
momentum invariant for a self-preserving wake under the idealized distortion (6). 
The values in the last column of table 1 may be compared with those from Towns- 
end’s measurements of an undisturbed wake : 

bum = 0.512 for x/d = 80to 160, dU, 
= 0.39 for x/d = 500 to 950. 

In  the present tests, x/d = 30 (for s = 5 in.) to 110 (for s = 45 in.). 
The peak velocity is plotted in figure 1 together with curves representing self- 

preserving models (from equations (A 3), (A 8) of the appendix, and results similar 
to equations (A 6), (A 7)) .  Since the distortion is initiated atx/d E 25 for the wake 
behind the +in. cylinder, this wake cannot be expected to be of self-preserving 
form at the beginning of the distortion; it will still be expanding more rapidly 
than is indicated by the self-preserving scale. It is not surprising then to find that 
the peak velocity defect is initially greater than that predicted by the similarity 
law, while subsequent measurements fall below the model values. 

In  figure 2 the velocity defect measured a t  one section of the distorted wake is 
plotted with a normal curve enclosing the same area. The normal distribution gives 
a very good representation of the mean velocity variation, as is the case in an 
undistorted wake, but as there the measured values fall more rapidly to zero at 
the edge of the wake. 
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FIGURE 1. Variation in peak velocity defect in wake behind 4 in. cylinder. 

I I I I I I I I 
0 10 20 30 40 

s (in.) 
FIGURE 1. Variation in peak velocity defect in wake behind 4 in. cylinder. 

Y (in.) 
FIGURE 2.  Comparison of measured velocity defect to normal distribution (s = 35 in.). 
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model suggests. Also, the wake of the largest cylinder does not conform to the 
self-preserving pattern anywhere in the distorting duct. In  this wake neither the 
variation of width nor the structure of the turbulence is that associated with self- 
preservation. These deviations suggest immediately that wakes that have adopted 

xld for 
Reynolds imposition of 

d (in.) number distortion 

1 6  2000 57 to 164 
3400 37 to 92 

!L 5300 21 to 62 
4900 (for velocity 

3 

_-- 
16 

defect measurements) 

TABLE 2 .  Test data. 

FIGURE 3. Variation of width of wakes behind circular cylinders of diameters A, -&, and 
+ in. The points marked represent velocity defect measurements with a translated 
vertical scale. 

one self-preserving form (or have gone some way towards doing so) are able to 
move much more rapidly into another self-preserving mode than are those in 
which large departures from self-preservation exist initially. In  the following 
discussion it will be seen to what extent this premise is justified. But before 
examining the factors that decide whether self-preservation will be achieved, we 
shall consider the reaction of a wake during the early stages of straining. The 
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FIGURE 3. Variation of width of wakes behind circular cylinders of diameters &, A, and 
f in. The points marked A represent velocity defect measurements with a translated 
vertical scale. 

one self-preserving form (or have gone some way towards doing so) are able to 
move much more rapidly into another self-preserving mode than are those in 
which large departures from self-preservation exist initially. In  the following 
discussion it will be seen to what extent this premise is justified. But before 
examining the factors that decide whether self-preservation will be achieved, we 
shall consider the reaction of a wake during the early stages of straining. The 
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FIGURE 5. Comparison of wake spreading relative to mean streamlines for 3% in. cylinder. 
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FIGURE 7 FIGURE 8 
FIGURES 6-8. Profiles of intensity of streamwise component of turbulence (3 vs y) at 
entrance to distorting duct (s = 10 in.), half way through it (s = 30 in.), and at its end 
(8 = 50 in.) for =&, 3% and 8 in. cylinders. Scales arbitrary. 
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nature of the departures from self-preservation will be explained and the 
possibility of a rapid approach by the turbulence to an equilibrium structure will 
be discussed. 

(a )  Initial rapid expansion 
The basis of the similarity postulates of Q 3 (equations (3)) was the assumption 
that the scale of the velocity defect was proportional to the scale of the turbulence 
so that the flow could be characterized by a single velocity scale. The justification 
for the linking of the scales of turbulence and mean velocity variation is that the 
shear associated with the latter is the sole means of maintaining the turbulence of 
a wake once the budget of turbulence energy introduced near the generating 
body has been dissipated. But the interdependence of mean shear and turbulence 
can be expected to break down if a new mechanism for generating turbulence is 
suddenly introduced, as is the case in a distorting mean flow. 

Townsend’s study of the distortion of homogeneous turbulence shows (Towns- 
end 1954, figures 3 and 4) that the component of turbulence in the direction of 
compression is greatly augmented relative to the unstrained state and to the 
other components. And it is this component that may be expected to be chiefly 
responsible for the spread of the turbulent region. Grant’s (1958) studies of wakes 
revealed large turbulent motions in the form of laterally directed jets which had 
an important part in wake expansion. 

We can now see how the assumed proportionality of velocity scales breaks 
down. The amplification of the wake turbulence (and especially of its lateral 
component) by the added strain gives rise to a rapid lateral expansion of the 
turbulence wake. The velocity defect wake cannot lag far behind in this expan- 
sion; the comparison of wake widths based on defect and turbulence (figure 3) 
shows that it does not. Thus the increase in the turbulence scale (relative to that 
in an undisturbed wake) must be coupled with a relative reduction in the scale 
of the velocity defect. The variation of velocity defect shown in figure 1 is 
consistent with this prediction. 

(b )  Abrupt end to expansion 
The initial period of rapid expansion appears (figure 4) to end quite abruptly when 
the rate of strain has (presumably) achieved about one-half its ultimate value; 
the measured wake width is thereafter nearly proportional to the self-preserving 
model. Before considering possible causes for the termination of this rapid 
growth, we should note that the break in the expansion does not appear so extreme 
in figure 5 where account is taken of inwards convection. 

A possible explanation for the sharp break in wake growth is that it marks an 
approach to an equilibrium structure in the strained turbulence. In  such a 
structure the lateral component, that chiefly responsible for wake spreading, 
could no longer grow independently of the other components; some of the energy 
added to it would be distributed between the others. The idea that the turbulence 
structure may be near equilibrium when the rate of strain has not attained its 
maximum value and when the total strain is still small seems to be contradicted 
by the behaviour of the distorted homogeneous turbulence studied by Townsend. 
There an equilibrium structure was set up only after the strain had been applied 
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for nearly the whole length of the duct. This objection can be countered by 
observing that the wake turbulence has been given a definite structure by the 
mean wake strain while the interaction of many wakes had produced near-iso- 
tropy in the grid turbulence entering the distorting duct in Townsend’s studies. 
It is consistent with Townsend’s postulate of similar equilibrium structures of 
highly strained turbulence in various flows that the wake structure need change 
only slightly when a new strain is applied to it. The more general argument that 
the possible degree of anisotropy must be limited may also be invoked. 

Nevertheless, it  seems doubtful that an approach to an equilibrium structure 
is the decisive factor in the reduction of the initial rate of spread. The wake of the 
$ in. cylinder appears (figure 3) to react very much as do the other wakes during the 
initial stages of distortion, while its structure is quite different (figure 6 ) .  In  the 
absence of an initially highly structured turbulence we cannot justify such a rapid 
approach to equilibrium. In this connexion it is not helpful to note that the 
wakes behind the smaller cylinders quickly assume self-preserving width scales 
once the rate of distortion has become constant. Wake spread is not an accurate 
index of the structure of turbulence. This can be seen by considering the wake 
in simple rectilinear convection. As has been noted earlier, the scales of velocity 
defect and wake width take up self-preserving forms long before the turbulence 
does so. 

This line of thought suggests another possible explanation of the abrupt end to 
the initial expansion. Rapid lateral and transverse spreading must reduce the 
shearing intrinsic to a wake, and thus check turbulence production through this 
mechanism. The large ‘eddies’, those chiefly responsible for wake growth, are 
directly dependent on the mean shear. It is, of course, the largest, most slowly 
changing eddy forms that are most influenced by a steady distortion. Thus 
they are amplified also when the external strain is first applied. But they soon 
break up and their successors, set up by the weakened shear, are somewhat less 
in tense. 

We may note too that the first effect of distortion may be to release quickly 
many of the laterally directed jets found by Grant (1958), thus depleting the 
number of the special structures from which they might later have been formed. 
Further, it could be this mechanism, rather than amplification, that is chiefly 
responsible for the early rapid expansion of a strained wake. 

( c )  T h e  competition of strains 

Following the wake a little further into the duct, we next consider the factors that 
decide whether or not it finally adopts the self-preserving forms of $2. Our 
considerations will be based on the equation governing the kinetic energy of the 
turbulence. The approximate form of this equation applicable to simple shear 
flow in a distorting, constant-area convection is 
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with 
- = u --u'(.)y- . 
Dt = [" ax aY "1 

As before, we have restricted ourselves to the region near the plane of symmetry 
z = 0. 

The terms (a )  and ( b )  represent production of turbulence energy by the two 
strains applied to the turbulence in this flow; ( a )  is absent from the equation 
governing homogeneous distorted turbulence, ( 6 )  from that governing an 
undistorted wake. The term ( c )  represents the most important processes by which 
turbulence energy is transmitted laterally through the flow; it too is absent from 
the equation for homogeneous distorted turbulence. The term (d )  represents 
dissipative processes. It is the relative size of the production terms (a )  and ( b )  that 
determines the response of a wake to distortion by the basic flow; these are the 
driving terms of the equation, the others must adopt values consistent with them. 

The production term associated with the straining of the mean velocity 
distribution (a )  is independent of the turbulent intensity and of the distortion, 
except in so far as distortion alters the velocity defect scales. This may be seen as 
follows. If we assume a scale uo for the velocity defect (but not for the turbulence) 
we obtain dl da --=-ul l , - f-yu --O+-zo f '  3% 

a7 [ 2 ' ( d x  dx ) ] 
= -u I -(yf)', duo 

1 0 ax 
on using the momentum equation (1) and integral (2). Then 

-au dU0 -uv- = u u - (yjf'). 
ay O ax 

We have seen (figure 2) that the self-preserving form f (7) is not much affected by 
distortion. 

The production term ( b )  is, on the other hand, dependent ultimately on the 
intensity of the distorted turbulence. The distortion of originally isotropic 
turbulence (Townsend 1954) gives rise to a structure such that turbulence 
production is achieved (3 > 2). The turbulence in a moderately well-developed 
wake is, prior to distortion, of slightly adverse form; that is, 3 > 3. But the 
applied strain will quickly modify the structure to achieve a net production of 
turbulence energy through the processes represented in term (b).  

If distortion is applied to a wake whose turbulence has not been given form by 
the mean shear (the process of term (a ) ) ,  there is a possibility that the production 
by distortion (term ( b ) )  will achieve dominance; that the wake will spread so 
rapidly as to reduce further the importance of shear production; and finally that 
the turbulence will develop more like strained homogeneous turbulence than 
wake turbulence. But if the turbulence of a wake is sufficiently well organized, 
that is, if the decay and development have progressed far enough to make UV 
comparable in magnitude with 2, the intrinsic wake shear may maintain control 
so that the decaying turbulence follows closely the development of the velocity 
defect. One possible form of interaction between the two kinds of production has 
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already been mentioned, a drop in production by shear (a) as a result of augmented 
wake expansion. There is also the possibility that initially highly structured 
turbulence is a factor in limiting the anisotropy (3 > 3) preferential to produc- 
tion by distortion (b).  

These ideas are consistent with the evidence of figures 6-8. There we see that 
the turbulence behind the smaller cylinders has at  the entrance to the distorting 
duct already adopted the structure characteristic of interaction with a, mean 
velocity defect flow, the production concentrated in regions of maximum shear. 
This structure is maintained in these wakes throughout the distorting duct. On 
the other hand, the turbulence behind the +in. cylinder is still unformed by the 
mean shear on entering the distorting duct. This intensity profile retains its 
simple shape right through the distorting section. At no point does production by 
wake shear have a dominant role in forming the turbulence of this wake. 

It may seem puzzling that so marked a change in response can take place over 
such a small range of cylinder diameter. But the fall in turbulent intensity in the 
first part of a wake (xld < 100, say) is far more rapid than is suggested by the law 

(See Townsend 1956, figure 7.5, etc.) Then the intensity of the wake turbulence 
at  xld N 30 where the wake behind the 4 in. cylinder is strained may be greater by 
a factor of 3 or 4 than that at  x / d  N_ 50 where the wake of the &in. cylinder is 
distorted. 

( d )  The criterion for seq-preservation 

Finally, an attempt will be made to give a more precise form to the ideas developed 
above. We take the ratio of the two production terms of equation ( 7 )  as a measure 
of their relative importance, tentatively defining a wake dominated by shear to 
be one for which 

- uv(au/ay) 
(v2-w2)u1(x) u, 

R = =-- > 1. 

This criterion can be rewritten 
- 

- uv a‘W A = = >  ~ 

v 2  - w2 Ui l (aU/ay) ’  

in which form it prescribes a degree and kind of organization which must be 
attained if wake shearing is to remain an important influence in turbulence pro- 
duction. In  order to see what level of organization is required, we shall estimate 
the strain ratio on the right-hand side of this inequality for the wakes studied 
experimentally, considering their form at the nominal entrance to the distorting 
duct. 

Townsend’s measurements of the velocity defects of simple wakes in the range 
x/d = 80 to 160 can be described with good accuracy by 

u x - x  .t 
Ul 
- (To) = 1-00exp ( - 1 0 . 6 ~ ~ ) ;  xo = - 20d; 



348 A .  J .  Reynolds 

with U = U, - u. Hence we find the maximum velocity gradient in the wake: 

2.80 - _  y) -- - 
ul a~ m, x - - x ~ '  

To represent a typical value of wake shear and to account for the slight broadening 
a t  the entry to the distorting section (figure 4) we introduce a factor 4 in esti- 
mating the shear. As the criterion for a shear-dominated wake we have now 

with (a Ulay) ,  given above. In  table 3 are given the values of the strain ratio in the 
wakes behind the three cylinders. 

The criteria for the three wakes do not vary greatly. This is due to the weak 
dependence (through x,,) of the wake shear on the diameter of the generating 
cylinder. One fact emerges clearly and is not dependent on the particular criterion 
chosen here: the strains applied in the early stages of distortion are nearly the 
same for all three wakes. Then it is to the structure of the turbulence that we must 
ascribe the differences in their reactions to the combined strain. 

d (in.) 
3 
__. 1 6  0.115 0.30 
_-- 1 6  0-103 0.34 
6 0.091 0.38 

TABLE 3. Strains a t  entrance to  distorting duct. 

For the wake of the in. cylinder the criterion suggested for dominance of 
production by wake shear is A > 0.30. In  view of the well-developed structure in 
this wake, the criterion may well be satisfied even when the added distortion has 
made considerable progress in changing the structure. But for the 4 in. cylinder 
wake we must have A > 0-38. Here it seems very doubtful that the correlation 
i iG/ [~22. '~ ]4 will be large enough initially to allow the criterion to be satisfied for 
long as the added distortion proceeds to modify the turbulence. 

It appears then that the critical value of the parameter R cannot be very 
different from the assumed value of unity. 

5. The final forms of wakes in distorting flows 
In  the experimental results and discussion of the preceding sections we have 

distinguished two kinds of wake development during the period in which the 
distortion is established. We now consider the forms ultimately adopted by wakes 
following these two courses. 

One development, that revealed by a conventional search for self-preserving 
solutions, is governed by the production of turbulence by the shear intrinsic to 
the wake. In  its final form (which is probably not attained in the short duct used 
in the experiments) the scales of velocity defect and turbulence will once again be 
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proportional. The nature of the transition suggests that the ratio of turbulence 
scale to mean velocity scale will be higher than in an undistorted wake. Certainly 
the expansion relative to the mean streamlines is more rapid than in that flow 
(figure 5 ) .  

In  the alternative wake development the turbulence becomes independent of 
the mean shear of the velocity defect, being maintained by the strain applied by 
the distorting duct. This form is not prescribed by a search for self-preserving 
solutions of the momentum equation (I). Since the Reynolds stress contributing 
to the momentum balance loses its control over the overaU development, there is 
no longer a link between the velocity defect and the turbulent intensity and the 
associated rate of wake spread. Then the situation which arose in the initial 
stages of distortion-an increase of the turbulence scale relative to the velocity 
defect scale-can be perpetuated. 

The consideration of the momentum equation in $ 2 (a )  gave no indication of 
this second mode of wake development. But the subsequent discussion has hinged 
on the production of turbulence energy. This suggests that the equation ( 7 )  
governing the turbulence energy may provide a more satisfactory basis for a study 
of self-preservation. In  contrast, no such 'higher appeal' is possible for the 
distorted laminar wakes whose self-preservation was considered in $ 2  (b). 

(a )  Reconsideration of self-preservation 

As before we assume a self-preserving mean velocity variation 

with uo,l, the scales of the velocity defect. The term of equation ( 7 )  which 
represents production by mean shear is again 

-au du 
ay dx 

-uv-  = uu -O(yff'). 

We assume also that the turbulence is self-preserving: 
- 

+q'2 = v; gi$(y), jTG + 44". = u!h(y), 

v2 = 2%g,,(y), w2 = %733(y), 

- - 

where u, is the turbulence velocity scale and I, is a length characterizing the decay 
of the turbulence. 

Equation ( 7 )  can now be written 



350 A .  J .  Reynolds 

Case I .  Production by wake shear remains important 

In  this case vo cc uo and the conditions (4) derived from the momentum equation 
are still relevant. The energy equation becomes 

(a )  ( b )  (c) (4 

The convection terms on the left-hand side and the terms (a)  and ( c )  are now 
rendered independent of x. But the term ( b )  representing the activity of the 
imposed distortion is not of the required form for an arbitrary choice of a’@). 
The general form? of the distortion for which this energy equation is rendered 
self-preserving is 

a’(z) = (;+i)-l. 

Thus only the distortions specifically treated in $ 2  are 
preservation of a turbulent wake. The dissipation term 
processes and must model itself on the others with 

compatible with self- 
( d )  represents passive 

I, cc l . ( y .  

Case I I .  Production by distortion becomes dominant 

Here the term (a )  ultimately becomes negligible as uo/wo + 0. Equation (9)  
can be written 

U 
‘ 0  h‘- n(7). = 2u1(g22-g33)- (daldx) I, (daldx) 1; 

This equation is of self-preserving form if 

withp and q constants. The last condition shows that self-preservation is possible 
again only for 

a’(x) = (:+:)-’. 
We have not yet made use of the momentum integral relation (2). It must be 

used with caution here, for in its derivation a term of form ea(x)ZO vf (representing 
the normal Reynolds stress) was neglected, while a term of form ea(z)l,u, was 
retained. Thus several subcases emerge. In  what follows we take ug cc e-a(z). 

coefficient of term ( b )  be constant. 
t This form is found by combining the conditions (4) with the condition that the 
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Case I l a .  viluo -+ 0 

Ultimately, ea(x)Zouo = constant, as before. Then we have the condition 

1 1  -+- = 1. 
q r  

2 1  
But 

so that 3r > p .  

Case 116. v:/uo --f constant 

v;/uo a exp (( -p+r)44 ) 

Here 2r = p ,  so that r = 4, p = 3. 

Case 11 c. v @ ~ ~  + 00 

Here ultimately ea(x)lovg = constant, giving the condition l /q+ 2/p = 1. Also 
2r < p .  

Let us next apply these results to the first example of Q 2 (a )  which provides a 
model of the experimental situation. From the last of conditions (10) we see that 
p = q. Further, in all the cases enumerated above the mean velocity scale drops 
at least as rapidly as the turbulence scale. Thenp = q > 2 > r .  Hence: 

Case P = 9  ,r 

I1 a < 3 , > 2  < 2 , > Q  
IIb 3 Q 
I1 c 3 < 8  

We may compare these results with experimental values obtained from 
figures 1 and 3, namely r = 1.69, q = 3.36. Note that q-l+r-l = 0.89 and 
q/r = 1-99 for these values. 

I 2 2 

Case I I I .  Production by shear dominant 

Here the energy equation is as for Case I ,  but the term (b)  is negligible. The 
absence of this term does not alter the predicted pattern for self-preservation 
from that in which the two kinds of production are both active. There are no self- 
preserving wakes corresponding to the condition r > 2 > q. 

This is the case governed by the treatment of Q 2 which was based entirely on 
the momentum equation, without consideration of the turbulent energy balance. 
The remarkable aspect of the experimental results is that the Scales characteristic 
of negligible distortion persist so far into the range where distortion is important. 
A possible explanation is that a more rapid wake spread would lead to a reduction 
in the total turbulent energy production, an effect almost certainly inconsistent 
with more rapid spreading of the turbulent region. We investigate this matter in 
the following stability analysis. 

(b )  Stability of sev-preserving wakes 

We confine ourselves to the case a'(x) = a, a constant, and consider the stability 
in the rbgime of Case I I a  of a wake whose development is specified by the scales 

uC cc e-ax, I,P cc e-ax, @ cc e-ax, p = q, r- l+ q-l = 1, 
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with respect to other such forms. We define 

= Ea + Eb = U l [ u O ( d u O / d x )  a#' f 2avg(gZ2-g33)l 

and R = Ea/Eb as before. K ,  and Kb are constants of proportionality. We find 
that 

For dEldr 0,  we may expect the flow to be stable with respect to other flows 
of the prescribed form. An increase in r gives an increase in E and thus an 
augmented wake spread. This increase implies a higher value of q and a corre- 
sponding, stabilizing decrease in r. We have stability here for 

that is, for R > 1 with x large. Also, dR/dx oc - (r-1 - q-l), so that dR/dx < 0 for 
r < 2 .  

In  the regime of important production by wake shear ( R  > 1) we have ulti- 
mately a stable self-preserving solution for r = 2,  unstable solutions for r < 2,  
and of course no solutions for r > 2. On the other hand, for the case of important 
production by distortion (R < l), the flows considered are ultimately unstable 
for all r .  However, solutions with r < 2 are stable further downstream than those 
with r = 2. 

But the criterion of instability dE/dr < 0 ceases to be useful as r -+ 3 to give 
Case11 b.  We have seen that q = 3 for all r < 9. This suggests that the development 
of Case I1 (with a'(x) = constant) will ultimately proceed with the scales given 
under Case IIB. The experimental values r = 1-69, q = 3.36, q/r = 1-99 do not 
provide a decisive verdict. 

Note that E,, Eb = E a ( ~ ) ,  Eb(T). The stability of the entire wake must depend 
upon some mean value of R across the wake. In  choosing the criterion for table 3 
an attempt was made to select such a typical value. It will be remembered that on 
this basis the critical value of R was estimated to be near unity. 

A similar stability analysis may be applied to a wake distorted as in the second 
example of 5 2 (a). From the conditions (10) we find 

vo" K x-m, zg oc x-m, p-1- q-1 = m-1. 

Take u; cc x - ~ .  For stability in the regime of Case IIa it is required that 

For r/m > 0,  stability is assured ultimately (for large x) ,  as might be expected. 
For the case m + 0 (simple rectilinear convection) the self-preserving wake is 
stable for all x. 
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(c) The ultimate forms of distorted wakes 

We consider now the strains in the wakes studied experimentally in what appear 
to be their ultimate forms of development. For the central portion of the distorting 
duct the data of figure 3 can be described by the relationships 

353 

b,/d = A e-aslq, 

where the constants A are characteristic of the width of the turbulence wakes. 
Relationships of similar form will describe the velocity defect width (b,), but the 
constants A must be replaced by other constants A’, which may be estimated as 

0.512 A ’ = - -  
0.732 A .  

(See equation (A 3).) We take 2um/b, to represent the wake shear, and using the 
relation b u  ea(s)A? -m = 0.48 

d u, 
(the constant derived from table I), we find 

__-- 2% Oeg6  exp { - a(: - i) s) . 
b, U, - dAl2 

It is now possible to determine 2um/abo U,, the ratio of the representative strains. 
The results are given in table 4. 

1 1  2% --- 
d (in.) A‘ r q  a u, bo 

3 __ 1 6  8-95 0 1-844 
_- 1 6  6-84 0 1.894 

3.95 113.40 3.56 e - U d 3 4 0  B 
= 2-48 for s = 35 in. 

TABLE 4. Strain ratio during distortion. 

Throughout the duct the wake shear is largest in the wake of the 4 in. cylinder, 
even though this shear no longer controls the development and must eventually 
diminish in importance. This indicates a smaller lateraI spread by this wake in 
the early stages of distortion and thus gives support to the contention (of $4 ( b ) )  
that the establishing of an equilibrium structure of turbulence is not an important 
factor in checking the wake growth soon after distortion is first applied. The 
evidence of table 4 reinforces also the view that it is the organization of the 
turbulence that is of prime importance in deciding the course of development 
rather than the relative magnitude of the two strains. 

The near equality of the strain ratios in the wakes of the smaller cylinders gives 
rise to some interesting speculations. A unique ultimate form for the strain would 
be quite consistent with the single course of development (r = 2 )  encountered in 
wakes that do not become distortion-dominated. A unique structure might also 
be expected in the turbulence. 

23 Fluid Mech. 13 
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Whether or not these suppositions are correct, it  seems doubtful that there 
exist ultimate forms of wake development (for a‘(x) = constant) in which the 
turbulence production by distortion is negligible (Case 111). A vigorous wake with 
initially large shear will expand so much before adopting the self-preserving 
pattern that the shear will be considerably reduced in importance. On the other 
hand, a weaker wake will be rapidly compressed so that its shear strain becomes 
more important. 

Unfortunately, it  is not possible now to do more than speculate about the 
reaction of a wake in the interesting limiting cases. In  the experiments discussed 
here the two strains were (as is shown in tables 3 and 4) of comparable size and the 
initial structure of the turbulence was of crucial importance in deciding the mode 
of development of a distorted wake. 

Thanks are due to Dr A. A. Townsend with whom the experiments were planned. 
The pervasive influence of his earlier work must be so obvious that no further 
acknowledgement is necessary. 

Appendix. Model self-preserving wakes 
We consider wakes that are in the undistorted self-preserving condition on 

reaching the distorting section, requiring that they remain self-preserving 
throughout and that their width and velocity scales be continuous at  the section 
(xl) where the distortion is begun. Then if 

b = b’(x - x O ) i  

specifies the wake width variation prior to distortion, its variation under distor- 
tion is found from equation (5) to be 

(2)’ = exp { - 3[a(x) - a(x,)]> exp [a(x’) - a(zl)l dx’ + (xl - x,,) . (A 1) 

The influence of the distorting section cannot be imposed instantaneously; an 
extended transition must be expected instead. Townsend’s measurements of 
mean velocity along the duct centre-line (Townsend 1954, figure 2) suggest that 
this transition extends fully 10 in. upstream and downstream of the beginning 
of the distorting section. His other measurements are consistent with a transition 
of this kind, as are those reported here (figure 4). Then a graded imposition over a 
20 in. section of the duct would appear to represent quite closely the way in which 
lateral straining is initiated. We take 

[Iz: 1 

with x1 = 10$in., x2 = 30$in., measured from the cylinder axis, and 

a = (loge4)/40 = 0~0346in.-~, 

the value appropriate to the duct described in $ 3  (a) ,  if the boundary-layer com- 
pensation is correct. 
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The results (A l), (A 2) can be used in conjunction with empirical factors from 
Townsend's (1956) experiments to construct model scales. In  the present experi- 
ments distortion began in the range xld = 25 to 160. Then Townsend's data for the 
range xld = 80 to 160 will provide empirical factors appropriate to this study, 
since the flow patterns are not strongly dependent on cylinder Reynolds number. 
For the width of an undistorted wake of self-preserving form we have 

b b' x-x 4 
d=ht(-;t-O) ' 

with b'ldt equal to 0.512 for the width at  half-peak value of the mean velocity 
distribution, and 0.732 for the corresponding width of the distribution of the 
mean square of the longitudinal turbulence component. The virtual origin is 
given approximately by x2 = -20d. For the peak velocity defect we have in 
this range % =  l.oo(d) x-xo -4 . 

Ul 

Then the mass and momentum flux defects are characterized in this undistorted 
self-preserving wake by 

= 0.512. 
d U ,  

For a wake subjected to the distortion (A 2) and self-preserving throughout, we 
have from the result (A 1): 

with s = x-xl,  for 20 > s > 0, and 

(A 7) - 20.4 e-a(z-.z3) - 1.87e-2a(Z-X~), 
( F )  - 

for s > 20, the portion under uniform distortion. Here we have considered the 
wake behind a +%in. cylinder in fixing the virtual origin xo. But note that 

for any xo, 

where X I  is a virtual origin depending on the way in which the strain is applied. 
For the graded distortion (A2), x' = Q(xl+x2). For a self-preserving distorted 
wake we may expect 

ea(s)m- = 0.512 with s = x-xl,  

corresponding to (A 5). This expression can be used with (A 6), (A 7) to determine 
the peak velocity defect in the model distorted wakes. 

(A 8 )  
u b  

UI d 
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